Как решать логические задачи

Решение задач на логику — отличная гимнастика для ума детей и взрослых, прекрасный способ развития умственных способностей на каждый день. Чтобы научиться решать классические задачи по логике и логические задачи по математике, важно знать основные приемы и методы их решения. Ведь решить одну и ту же задачу и прийти к правильному ответу во многих случаях можно разными способами.

Знание и понимание различных методов решения поможет определить, какой способ подойдет лучше в каждом конкретном случае, чтобы выбрать наиболее быстрый и простой путь получения ответа.

К “классическим” логическим задачам относятся текстовые задачи, цель решения которых состоит в распознавании объектов или расположении их в определенном порядке в соответствии с заданными условиями. Более сложными и увлекательными типами заданий являются задачи, в которых отдельные утверждения являются истинными, а другие ложными. Задачи на перемещение, перекладывание, взвешивание, переливание — самые яркие примеры широкого ряда нестандартных задач на логику.

Основные методы решения логических задач

  • метод рассуждений;
  • с помощью таблиц истинности;
  • метод блок-схем;
  • средствами алгебры логики (алгебры высказываний);
  • графический (в том числе, «дерево логических условий», метод кругов Эйлера);
  • метод математического бильярда.

Давайте рассмотрим подробнее с примерами три популярных способа решения логических задач, которые мы рекомендуем использовать в начальной школе (детям 6-12 лет):

  • метод последовательных рассуждений;
  • разновидность метода рассуждений — «с конца»;
  • табличный способ.

Метод последовательных рассуждений

Самый простой способ решения несложных задач заключается в последовательных рассуждениях с использованием всех известных условий. Выводы из утверждений, являющихся условиями задачи, постепенно приводят к ответу на поставленный вопрос.

Пример:

На столе лежат Голубой, Зеленый, Коричневый и Оранжевый карандаши.

Третьим лежит карандаш, в имени которого больше всего букв. Голубой карандаш лежит между Коричневым и Оранжевым.

Разложи карандаши в описанном порядке.

карандаши

Решение:

Рассуждаем. Последовательно используем условия задачи для формулирования выводов о позиции, на которой должен лежать каждый следующий карандаш.

  1. Больше всего букв в слове «коричневый», значит, он лежит третьим.
  2. Известно, что голубой карандаш лежит между коричневым и оранжевым. Справа от коричневого есть только одна позиция, значит, расположить голубой между коричневым и другим карандашом возможно только слева от коричневого.
  3. Следующий вывод на основе предыдущего: голубой карандаш лежит на второй позиции, а оранжевый — на первой.
  4. Для зеленого карандаша осталась последняя позиция — он лежит четвертым.

Метод «с конца»

Такой способ решения является разновидностью метода рассуждений и отлично подходит для задач, в которых нам известен результат совершения определенных действий, а вопрос состоит в восстановлении первоначальной картины.

Пример:

Бабушка испекла для троих внуков рогалики и оставила их на столе.

Коля забежал перекусить первым. Сосчитал все рогалики, взял свою долю и убежал.
Аня зашла в дом позже. Она не знала, что Коля уже взял рогалики, сосчитала их и, разделив на троих, взяла свою долю.
Третьим пришел Гена, который тоже разделил остаток выпечки на троих и взял свою долю.
На столе осталось 8 рогаликов.

Сколько рогаликов из восьми оставшихся должен съесть каждый, чтобы в результате все съели поровну?

2016-02-19_1305

Решение:

Начинаем рассуждение «с конца».
Гена оставил для Ани и Коли 8 рогаликов (каждому по 4). Получается, и сам он съел 4 рогалика: 8 + 4 = 12
Аня оставила для братьев 12 рогаликов (каждому по 6). Значит, и сама она съела 6 штук: 12 + 6 = 18
Коля оставил ребятам 18 рогаликов. Значит, сам съел 9: 18 + 9 = 27

Бабушка положила на стол 27 рогаликов, рассчитывая, что каждому достанется по 9 штук. Поскольку Коля уже съел свою долю, Аня должна съесть 3, а Гена — 5 рогаликов.

Решение логических задач с помощью таблиц истинности

Суть метода состоит в фиксации условий задачи и полученных результатов рассуждений в специально составленных под задачу таблицах. В зависимости от того, является высказывание истинным или ложным, соответствующие ячейки таблицы заполняются знаками «+» и «-» либо «1» и «0».

Пример:

Три спортсмена (красный, синий и зеленый) играли в баскетбол.

Когда мяч оказался в корзине, красный воскликнул: «Мяч забросил синий».

Синий возразил: «Мяч забросил зеленый».

Зеленый сказал: «Я не забрасывал».

Кто забросил мяч, если только один из троих сказал неправду?

Решение:

Сначала таблицу составляют: слева записывают все утверждения, которые содержатся в условии, а сверху — возможные варианты ответа.
2016-02-19_1311

Затем таблицу последовательно заполняют: верные утверждения отмечают знаком «+», а ложные утверждения — знаком «-«.

таблица истинности

Рассмотрим первый вариант ответа («мяч забросил красный«), проанализируем утверждения, записанные слева, и заполним первый столбик. Исходя из нашего предположения («мяч забросил красный«), утверждение «мяч забросил синий» — ложь. Ставим в ячейке «-«. Утверждение «мяч забросил зеленый» также ложь. Заполняем ячейку знаком «-«. Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».

Рассмотрим второй вариант ответа (предположим, что мяч забросил зеленый) и заполним второй столбик. Утверждение «мяч забросил Синий» — ложь. Ставим в ячейке «-«. Утверждение «мяч забросил зеленый« — истина. Заполняем ячейку знаком «+». Утверждение зеленого «Я не забрасывал» – ложь. Ставим в ячейке «-«.

И, наконец, третий вариант: предположим, что «мяч забросил синий«. Тогда утверждение «мяч забросил синий« — истина. Ставим в ячейке «+». Утверждение «мяч забросил зеленый» — ложь. Заполняем ячейку знаком «-«. Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».

Так как по условию лишь один из троих ребят сказал неправду, в заполненной таблице выбираем такой вариант ответа, где будет только одно ложное утверждение (в столбце один знак «-«). Подходит третий столбец.

Значит, правильный ответ – мяч забросил синий.

Метод блок-схем

Метод блок-схем считается оптимальным вариантом для решения задач на взвешивание и на переливание жидкостей. Альтернативный способ решения этого типа задач — метод перебора вариантов — не всегда является оптимальным, да и назвать его системным довольно сложно.

Порядок решения задач по методу блок-схем выглядит следующим образом:

  1. графически (блок-схемой) описываем последовательность выполнения операций;
  2. определяем порядок их выполнения;
  3. в таблице фиксируем текущие состояния.

Подробнее об этом и других способах решения логических задач с примерами и описанием хода решения мы расскажем в следующих публикациях.

Отгадывайте самые интересные логические загадки, собранные специально для постоянных читателей нашего блога и учеников LogicLike, решайте логические задачи онлайн вместе с тысячами таких же целеустремленных как вы детей и взрослых!

статистика по задаче на выбор правильного отражения зайца в зеркале

Logiclike – более 2500 увлекательных заданий на смекалку и развитие логического мышления.